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Laboratoire de Magnétisme et d’Optique, Université de Versaillesb, 45 avenue des États-Unis, 78035 Versailles Cedex, France

Received 20 April 2000

Abstract. In order to investigate the role of nearest neighbors correlations in the relaxation of the High
Spin fraction in spin crossover compounds, we have developed a two macro-variable dynamical model based
on Kubo’s treatement of the master equation. This is compared to the local equilibrium approach, where
short-range correlations are assumed to follow adiabatically the long range-order parameter. The sigmoidal
shape of the relaxation, previously associated with the effects of interactions, and the so-called “tail effect”,
i.e. the extra-slowing down at long times due to the correlations are obtained. The accurate comparison
to experimental relaxation data confirms the coexistence of short-range and long-range interactions in
spin-crossover solids.

PACS. 64.60.-i General studies of phase transition – 05.70.Ln Nonequilibrium and irreversible
thermodynamics – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)

1 Introduction

Spin crossover compounds, which have been studied for
a number of years [1], are examples of molecular bistable
solids. Their bistability, originating from intra-molecular
vibronic coupling, can be enhanced by inter-molecular in-
teractions, which are elastic in nature, and these may in-
duce a 1st order transition with thermal hysteresis loop.
The width of the loop depends on the strength of the cou-
pling. Due to their bistable character, these systems are
potential candidates for information storage applications.
In the 1980’s, the Mainz group [2] discovered that, under
optical irradiation with a selected wavelength (550 nm),
at low temperature, these compounds could be converted
from Low Spin (LS) to High Spin (HS) state. The phe-
nomenon was called LIESST (Light Induced Excited Spin
State Trapping) and the HS state is populated via inter-
mediate, high-energy, vibronic states which rapidly decay
according to non-adiabatic, non-radiative processes. The
LIESST effect, which later was shown to be reversible, has
lead to a large number of investigations of the metastable,
photo-excited states, namely the post-LIESST relaxation
in pure and diluted compounds. All data show that the re-
laxation curves (population of the excited state vs. time)
of cooperative systems have a typical sigmoidal shape,
associated with a “self-accelerated” relaxation [3]. Such
curves have been successfully reproduced, when the coop-
erativity was not too strong, by a phenomenological for-
mula closely related to the available mean-field models. A
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recent analytical calculation has thrown some light on the
microscopic origin of this phenomenological formula [4].
This was a dynamic extention of a previous static mi-
croscopic Ising-like model introduced for the spin transi-
tions by Wajnflasz and Pick [5] later revisited for example
for the binuclear or the two-sublattice systems [6,7]. In-
dependently, Doniach et al. [8], used the Ising-like model
for phospholipid bilayers, showed the equivalence with the
simple Ising model, under a temperature-dependant field
which substitutes the effect of the different degeneracies of
the two levels. However, experimental relaxation curves of
highly cooperative systems show an extra slowing down
of the relaxation at long times, which is not explained by
the mean-field approach, the so-called tailed effect, but
could be reproduced by the Monte-Carlo simulations, car-
ried out by Romstedt et al. [9], and therefore could be
assigned to the development of correlations due to the
presence of short-range interactions.

The present work also focuses on the role of correla-
tions, and provides an analytical approach of the prob-
lem. We treat the master equation in terms of macrovari-
ables, following the method introduced by Kubo et al. [10].
The mean field approximation of the master equation
due to Suzuki and Kubo [11] is extended here to spin
crossover problem, taking effect of first-neighbour corre-
lations into account, leading to the dynamics associated
with the Bethe Peierls approximation [12]. The analytical
resolution can advantageously substitute for the Monte-
Carlo simulations which require extremely long computer
times when the low temperature processes are to be inves-
tigated. In addition, the present analytical model could
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be suited to further developments, e.g. the extension to
diluted systems.

2 The Hamiltonian and the evolution
equation

2.1 The Ising-like Hamiltonian

In the Ising-like Hamiltonian proposed by Wajnflasz and
Pick, the two levels have different degeneracies. We denote
g−, g+ the degeneracies of the LS, HS states respectively,
g = g+

g−
> 1 is the degeneracy ratio, ∆ > 0 the ligand

field (such that the LS state is the ground state), and J
the interaction between the molecules, assumed to have
an independant value on spin state. Accounting for the
isomorphism [8] between the Ising-like model and an
Ising model under a temperature dependant field, the
Hamiltonian is written:

H = −J
∑
〈i,j〉

σiσj −
(
kT

2
ln
(
g+

g−

)
−∆

)∑
i

σi (2.1)

where
∑
〈i,j〉 is the sum over the interacting neighbours.

The mean-field resolution of this Hamiltonian has been
widely presented, in static and, recently, dynamic mod-
els [4]. We now include the effect of the first-neighbour
correlations, i.e. we follow the Bethe Peierls approxima-
tion.

Let us consider a lattice of N spins. N+, N− respec-
tively denote the number of HS, LS molecules. Their
differenceX represents the “magnetization” of the system:

N+ +N− = N (2.2)
N+ −N− = X. (2.3)

The pairs of neighbours are denoted accordingly: N++,
N+−, N−+, N−−, and obey the following constraints:

N++ +N−− +Q =
zN

2
(2.4)

N++ +
Q

2
=
zN+

2
(2.5)

N−− +
Q

2
=
zN−

2
(2.6)

with z the coordination (number of first neighbours of a
given molecule) and Q = N+−+N−+ the number of pairs
in the mixed states HS-LS and LS-HS. The energy of the
system is expressed in terms of the two macro-variables
X,Q:

E(X,Q) = −zN
2
J + 2JQ−

(
kT

2
ln(g)−∆

)
X. (2.7)

For convenience, we introduce intensive macro-variables
x, q associated with X,Q:

x =
X

N
q =

Q

N
· (2.8)

The usual notations for the spin-crossover community are:
nH relative population of the HS state, nHL relative popu-
lation of the mixed states (HS-LS and LS-HS) of the pairs.
These are straightforwardly related to the above macro-
variables:

nH =
N+

N
=
N +X

2N
=

1 + x

2
(2.9)

nHL =
Q
zN
2

=
N+− +N−+

zN
2

=
2q
z
· (2.10)

The equilibrium properties of the model can be derived
from equations (2.1–2.6), leading to the self-consistent
equation of the static Bethe Peierls model. In the present
report, we rather start with the dynamical treatement of
the model, and afterwards derive the static properties,
which are already known and thus provide a relevance
check of the treatment.

2.2 The evolution equation

We follow here the van Kampen development [13] of the
master equation. For this, considering markovian dynam-
ics, we use the Chapman-Kolmogorov equation (known as
the master equation too) in the discrete case. The latter
is written in the one-variable case:

∂P (a; t)
∂t

=
∑
a′

W (a | a′)P (a′; t)−
∑
a′

W (a′ | a)P (a; t)

(2.11)

where P (a; t) is the probability density for the system to
be in configuration a at time t, and W (a | a′) the rate
transition for the system to move from configuration a′ to
configuration a.

In the present two macro-variables (X,Q) case, we ex-
press the transition rate as a function of both the initial
state (X,Q) and the length of the jump (δX, δQ).

W (a | a′) = W (X,Q | δX, δQ) . (2.12)

For convenience, and also for the coherence in the choice
of the intensive macro-variables, the transition rate is re-
expressed:

w (x, q, δX, δQ) = N−1W (X,Q | δX, δQ) . (2.13)

The van Kampen development yields the following set of
evolution equations (for the detailed derivation, see [14]).

dx(t)
dt

=
∑
δX

∑
δQ

δXw (x, q, δX, δQ) (2.14)

dq(t)
dt

=
∑
δX

∑
δQ

δQw (x, q, δX, δQ) . (2.15)
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3 The dynamic choice

To choose the transition rates, we follow Kubo and
Saito [10] who treat a cluster made of a central atom
and its first neighbours as representative of the system.
Their approximation realises a cut-off of the inter-cluster
interactions, analogous to the static Bethe-Peierls treat-
ment [12]. For simplicity we use the “magnetic” nota-
tions associated with the (fictitious) spins of the Ising
Hamiltonians.

The central spin can be flipped by thermal fluctua-
tions, and we start with the case of a central spin in the
“up” (+) state. It is surrounded by k up spins and z − k
down spins. When the central spin flips, the magnetisa-
tion of the system increases by δX = −2 and the num-
ber of mixed pairs by δQ = 2k − z. The transition rate
is assumed to be the product of the flipping probability
by the number of suited configurations of the system, Ω,
expressed as [10,15]:

Ω ' N+

CkN++
Cz−kN+−

Czz
2N+

' N+C
k
z

Nk
++

(
Q
2

)z−k
(
zN+

2

)z (3.1)

which is the average number of up spins multiplied by
the number of different ways for taking k pairs (++) out
of N++, multiplied by the number of different ways for
taking z − k pairs (+−) out of N+−, and divided by the
number of equivalent permutations. To derive the second
expression we applied the Tagaki approximation [15].

The microscopic transition rates wm(σ0, k) of the cen-
tral spin in the initial states σ0 also obey the detailed
balance equation:

wm(σ0 = +1, k)Pe (σ0 = +1, k) =
wm(σ0 = −1, k)Pe (σ0 = −1, k) (3.2)

with Pe (σ0, k) the corresponding equilibrium probabilities
of the cluster. This leads to:

wm(σ0 = +1, k)
wm(σ0 = −1, k)

= e−β∆E (3.3)

with ∆E = E (X − 2, Q+ 2k − z) − E (X,Q) the energy
difference between the final and the initial states of the
cluster.

Since equation (3.3) does not separately provide the
up and down transition rates (but only their ratio), a
dynamic choice has to be made. This is quite general
for the dynamic approaches based on a time-independent
Hamiltonian. Following Kubo and Saito [10], we make the
following choice:

wm(σ0 = +1, k) =
1
τ

e−β
∆E
2 (3.4)

wm(σ0 = −1, k) =
1
τ

eβ
∆E
2 . (3.5)

More precisely, for a spin up (+) surrounded by k spins
up, the transition rate writes:

wm(σ0 = +1, k) =
1
τ

eK(z−2k)+µ (3.6)

with K = J/kT and µ =
(
kT
2 ln(g)−∆

)
/kT .

A Glauber-type dynamic choice [16] would lead to:

wG
m (σ0 = +1, k) =

1
2τ

(1− σ0 tanh (β∆E)) . (3.7)

Experimental data for spin crossover compounds es-
tablished the presence of an intramolecular energy
barrier [1,3]. The role of interactions on the intramolec-
ular barrier energy Ea, was first described with a
phenomenological macroscopic model [3], and later sup-
ported by a microscopic cooperative dynamic model [4].
The presence of the energy barrier is accounted for here
(as in [4]) through the Arrhenius-type expression of the
individual flipping frequency:

1
τ

=
1
τ0

e−βEa. (3.8)

The barrier energy in equation (3.8) here does not ac-
count for the effect of interactions, since these are already
involved in the previous expressions of the transition rates
(through the energy values). It is worth noting that the
Kubo and Saito choice merely adds the intramolecular
barrier energy and the interaction energies. Finally, the
flipping rates are expressed as:

W+ (X,Q→ X − 2, Q+ 2k − z) =
1
τ0

e−βEaΩeK(z−2k)+µ

=
1
τ0

e−βEaN+C
k
z

Nk
++

(
Q
2

)z−k
(
zN+

2

)z eK(z−2k)+µ.
(3.9)

They are re-expressed in terms of x, q:

w+ (x, q, δX = −2, δQ = 2k − z) =

N−1W+ (X,Q→ X − 2, Q+ 2k − z)

=
1
τ0

e−βEa
1 + x

2
Ckz

(
z
2 (1+x)−q

2

)k (
q
2

)z−k(
z( 1+x

2 )
2

)z eK(z−2k)−µ

(3.10)

The case of the central spin in the “down” (-) state
straightforwardly follows, by just interchanging up and
down everywhere in the previous developments. We
obtain:

w− (x, q, δX = 2, δQ = 2k − z) =

N−1W− (X,Q→ X + 2, Q+ 2k − z)

=
1
τ0

e−βEa
1− x

2
Ckz

(
z
2 (1−x)−q

2

)k (
q
2

)z−k(
z( 1−x

2 )
2

)z eK(z−2k)−µ.

(3.11)
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The evolution equations of the macro-variables can be
expressed now, using the expressions (3.10, 3.11) of
w+(x, q, δX, δQ), w−(x, q, δX, δQ), where x and q are now
time dependent averaged quantities (i.e. we have to re-
place x and q by x and q), as:

dx(t)
dt

=
2
τ0

e−βEa (C− − C+) (3.12)

dq(t)
dt

=
z

τ0
e−βEa (A+C+ +A−C−) (3.13)

with:

A± =

z
2 (1±x)−q

2 e−K − 1
2qe

K

z
2 (1±x)−q

2 e−K + 1
2qe

K
(3.14)

C± =
z∑
k=1

w± (x, q, δX, δQ)

=
1± x

2

(
e−K +

4q sinh (K)
z (1± x)

)z
e∓µ. (3.15)

The set of differential equations (3.12, 3.13), can be solved
numerically, e.g. using the modified midpoint routine [17].
It provides the time evolutions of the macro-variables x(t),
q(t). The static properties of the system also are obviously
derived.

It can be remarked that the present equations hold
for 1D systems, as well, and can easily be extended to
include both long-range and short-range interactions (for
spin-crossover solids, long-range are “ferro”, while short-
range may be “ferro” or “anti-ferro”[18]).

4 Static aspects

The static properties of the system are derived from equa-
tions (3.12, 3.13), by setting the time derivative to zero:

q2 = e−4K
(z

2
(1 + x) − q

)(z
2

(1− x)− q
)

(4.1)(
1− x
1 + x

)z−1

= e2µ

( z
2 (1− x) e−K + q sinh (K)
z
2 (1 + x) e−K + q sinh (K)

) z
2

(4.2)

where, for convenience, the observables x(t), q(t) have
been denoted x, q. This notation will be kept in the fol-
lowing. The effective field µ has been defined below equa-
tion (3.6). We recognize here the Fowler and Guggenheim
equations [19], known for the so-called quasi-chemical ap-
proximation, which is strictly equivalent to the Bethe ap-
proximation [12]. Solving these equations, we could plot
the temperature dependence of the HS fraction nH at equi-
librium, Figure 1. The first-order transition may occur
only around the equilibrium temperature, Teq, i.e. the
temperature at which the effective field, µ, vanishes [8].
It is obtained only if Teq is lower than TOD, ordering
temperature of the “pure” Ising system (without field).
The idea is that the reversal of µ will induce a jump in

0

0.5

1

70 80 90 100 110 120 130 140 150 160 170

n H

T

(1) (2) (3)

Fig. 1. Thermal hysteresis loop (the relative population of
the High Spin state nH vs. temperature T ) computed with
the present model (Bethe approximation), with: ∆ = 300 K,
g = 150, z = 4, J = 50 K, leading to Tequil = 119.7 K, JC =
41.5 K, which fulfill the occurrence condition for the first-order
transition J > Jc.

the equilibrium magnetization, only if the “pure” system
is ordered. Teq is given by:

Teq =
2∆

k ln (g)
· (4.3)

On the other hand, in the Bethe approximation, TOD is
given by:

TOD =
2J

k ln
(

z
z−2

) · (4.4)

Therefore the occurrence condition of the first-order tran-
sition writes:

∆

ln (g)
<

J

ln
(

z
z−2

) · (4.5)

The above relation results in an interaction threshold, Jc,
below which the thermal dependence of nH is continuous,
and usually denoted “spin conversion”.

J > Jc =
∆ ln

(
z
z−2

)
ln (g)

· (4.6)

This formula can be tested for two simple particular cases:
(i) it is known that short-range interactions do not order
the 1D Ising system (z = 2); (ii) it is also known that,
for z tending to infinity, the mean-field result is obtained,
i.e. the first order criterium obtained by Wajnflasz and
Pick [5] is obtained:

zJ >
2∆

ln (g)
· (4.7)

A simple extension is obtained in the model of uniform di-
lution, zp substituting for z, with p the relative amount of
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Fig. 2. Phase diagram of the diluted “pure” Ising model (no
field, no degeneracies in the spin states), in reduced coordi-
nates: T/2J vs. p, the relative concentration of magnetic atoms,
for the 2D lattice (z = 4). The full line is a second-order line
TC/2J = f(p) separating the ordered (domain II) and disor-
dered states (domain I); it starts on the concentration axis
at the geometric percolation threshold pg

c = 2/z. The actual
percolation threshold, pc, of the Ising-like system is given by
the intersection with the horizontal dotted line of ordinate
Tequil/2J . The occurrence condition of the first order transi-
tion for the Ising-like system is given by the location of the
“representative point” (p, Tequil/2J) in domain II.

“spin-crossover-active” molecules in the system. A critical
concentration pc for the system to undergo the first order
transition is thus derived. At pc, TOD = Teq, so that:

pc =
2
z

g
J
∆

g
J
∆ − 1

· (4.8)

The above equation easily shows that the actual (i.e. for
the spin-crossover transition) critical concentration pc is
always larger than the geometrical percolation threshold
2/z (i.e. 0 in the mean-field case).

The curve TC(p), for the true Ising system (diluted),
has been plotted in Figure 2. It can be used as a phase
diagram and provides the criterion for the occurrence of
the first-order transition in the Ising-like diluted system
(see caption of Fig. 2).

It is interesting to compare these theoretical results to
the experimental data for the phase diagram of a diluted
system. In the solid state, [FepNi1−p (btr)2 (NCS)2] · H2O
consists of planar layers of six coordinated metals ions
linked to each other in the equatorial plane. Basically,
this gives the system a 2D character, which leads to
take z = 4. Experimental data determined a percolation
threshold value pc = 0.44 [20]. The present calculations
(from Eq. (4.8)) lead to pc = 0.65, by taking z = 4, and
J , ∆ and g derived from the fit of experimental hysteresis
loops. This disagreement might be a signature of the pres-
ence of long range interactions. Indeed, in the long range
Ising model, there is no percolation effect (i.e. pc = 0). So,
introducing long range interaction into the present model,
will certainly lower the percolation threshold value. The

0

0.5

1

0 0.5 1

n H

nHL

S1

S2

I

Fig. 3. Flow diagram for the kinetic Ising-like system, in the 2-
macrovariable phase space, for parameter values corresponding
to the static hysteresis interval: ∆ = 300 K, g = 150, z = 4,
J = 50 K, (as in Fig. 1), T = 120 K. The timescale is not
needed (for simplicity Ea = 0. τ0 = 1). S1, S2 are the attrac-
tors of the system, I is the saddle point that all trajectories
avoid, thus evidencing the bistable properties of the dynamic
system. The bold curve (parabola shape), is that of the local
equilibrium approximation. A remarkable feature is that all
trajectories rapidly join the local equilibrium curve (bold line).
Relaxation occurs in two successive (fast, adiabatic) regimes.

analysis of the static data in such terms will certainly
provide precious complements to the investigation of the
relaxation curves, which is reported in the following.

5 Flow diagrams

The kinetic behaviour of the system out of equilibrium is
conveniently described using flow diagrams, made of the
trajectories of the system (for all possible initial states) in
the phase space defined by the macro-variables x, q. Equa-
tions (3.12, 3.13) are easily combined in order to eliminate
the time variable:

dx
dq

=
2
z

C− − C+

A+C+ +A−C−
· (5.1)

Equation (5.1) is resolved numerically (stepwise) for a
large variety of initial states. The computed flow diagrams
are shown for 3 different temperatures, differently located
with respect to the equilibrium hysteresis loop reported
in Figure 1: for the intermediate temperature value (be-
longing to the hysteresis interval), Figure 3, the system is
bistable, i.e. it possesses two stable attractors (S1 et S2)
and one unstable (I), which are obviously associated with
the equilibrium states of the static hysteresis loop. For the
other two temperatures, the system is monostable, i.e.
the flow diagrams, Figures 4 and 5 have a single attrac-
tor and no singularity. We now discuss the bistable case,
Figure 3, in more details. An obvious feature, almost com-
mon to all trajectories is a parabola-shaped curve which
contains the stable attractors and the singularity.
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0
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1

0 0.5 1

n H

nHL

Fig. 4. Flow diagram of the kinetic Ising-like system, in the
low-temperature (50 K), monostable conditions. All other pa-
rameter values are those of Figures 1 and 3. The trajectories
have a single attractor, and do not join the local equilibrium
curve (bold line).

0

0.5

1

0 0.5 1

n H

nHL

Fig. 5. Flow diagram of the kinetic Ising-like system, in the
high-temperature (200 K), monostable conditions. All other
parameter values are the same as in Figures 1, 3 and 4. The
trajectories have a single attractor, and most of them approx-
imatively join or follow the local equilibrium curve (bold line).

We have identified this parabola shaped curve to the
“local equilibrium curve”, resulting from the Huang ap-
proximation [21] which provides a one macroscopic param-
eter dynamic model. The local equilibrium approximation
is obtained by constraining nHL(t) to follow adiabatically
nH(t), i.e. dq(t)

dt = 0 leading to the parabola equation, de-
rived from equation (4.1) as:

nHL =
−1 +

√
1 + 4 (1− e−K)nH (1− nH)

(1− e−K)
· (5.2)

We have plotted this “local equilibrium curve”, computed
for the parameter values of Figure 3, as a bold line. This
curve is reminiscent of the “Most Probable Path” (MPP)

0

0.5

1

0 10 20 30

n H
,n

H
L

time (arbitrary unit)

nH
nHL

Fig. 6. Computed relaxation curves, nH(t), nHL(t) in bistable
conditions: all other parameter values are the same as in Fig-
ure 3. The successive relaxation regimes are illustrated: rapid
onset of correlations reaching the local equilibrium, followed by
a slow adiabatic evolution towards the long-range equilibrium
state. These curves are associated with curve (a) of the flow di-
agram shown in Figure 3, with the bold part corresponding to
the local equilibrium, i.e. to the pathway along the parabola.
Arbitrary time scale means Ea = 0, τ0 = 1.

described in a previous report [22] devoted to the study of
the metastable states, following a novel macroscopic dy-
namics derived from the so-called “density-of-states sam-
pling method” [23]. The Most Probable Path maximizes
the probabilities along the relaxation path, and thus re-
spects the local equilibrium conditions. A quantitative
comparison between a local equilibrium curve and a MPP
would not be obvious, however, since the latter is obtained
in the frame of sampling methods, i.e. for finite size sys-
tems only.

It is worth emphasing the remarkable feature Figure 3
of trajectories occurring in two steps: (i) first, the system
reaches the parabola, with a short range parameter (nHL)
which sizeably varies, while nH remains almost constant,
only adapting to the constraints equations (2.2–2.6); see
Figures 6–8; (ii) then, the system reaches the nearest at-
tractors, by following the parabolic path. The correlation
and magnetization parameters simultaneously vary. The
variations are much slower than during the first step. This
step is reported as bold lines in Figures 6–8.

This observation in the bistable domain leads to distin-
guish two different timescales, one (short) for the short-
order parameter and the other (long) for the variation
of the long-range order parameter. From a physical point
of view, it can be concluded that the evolution of the local
probability density (nHL (t)) first reaches the local equi-
librium and, later on, the long range parameter (nH (t))
evolves in order to reach the macroscopic equilibrium.
This clears up the local equilibrium approximation used
by Huang [21] which merely by-passes the former, rapid
step in the relaxation path.
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Fig. 7. Computed relaxation curves of the long-range or-
der parameter nH(t). Parameter values are those of Figure 6
(bistable conditions). Several typical initial states are consid-
ered: nH(t = 0) = 0, 0.35, 0.47, 0.85, 1; for all of them we
choose , nHL(t = 0) = 0. Such a constraint on the short-range
order parameter affects the transient regimes. The labels refer
to the curves in (Fig. 3). The bold part of lines correspond to
the local equilibrium, as in the previous figure.
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Fig. 8. Computed relaxation curves of the short-range order
parameter nHL(t), associated with the curves of Figure 7. From
top to bottom (on the left side), initial values of nH(t = 0) were:
0, 0.35, 0.47, 0.85, 1. The labels refer to the curves of Figure 3,
and bold part of lines correspond to the local equilibrium, as
in the previous figures.

6 Low temperature relaxation curves:
the effect of correlations

In this section we calculate the relaxation curves of
the metastable state (HS fraction after LIESST), at
different temperatures, in order to investigate the effect of
correlations. The system is prepared, at low temperature,
in the HS state (nH = 1, nHL = 0 ) and the relaxation

is governed by the evolution equations. Due to the
low-temperature situation, e−β(Ea+∆) � e−β(Ea−∆),
these equations write:

dx(t)
dt

= − 2
τ0

e−βEaC+ (6.1)

dq(t)
dt

=
z

τ0
e−βEaA+C+. (6.2)

For convenience these equations are re-expressed in terms
of nH, nHL:

dnH

dt
= −K1nHX (nH, nHL) (6.3)

dnHL

dt
= −K2nHY (nH, nHL) (6.4)

where:

K1 =
2
τ0

exp
(
−β
(
Ea −∆+

kT

2
ln (g)

))
(6.5)

K2 =
z

2
K1 (6.6)

X (nH, nHL) =
(

e−K +
nHL

nH
sinh (K)

)z
(6.7)

Y (nH, nHL) =
(

e−K +
nHL

nH
sinh (K)

)z−1

×
(

e−K − nHL

nH
cosh (K)

)
. (6.8)

Due to the non-linear character of the functions X , Y ,
these equations have to be solved numerically by the
modified midpoint routine. The results are reported in
Figure 9, in which nH(t) and nHL(t) are plotted. It clearly
appears that the relaxation curves have the expected sig-
moidal shape (previously obtained in the mean-field ap-
proaches [3,4]) but, in addition, exhibit a noticeable slow-
ing down at long times, as expected from the effect of
correlations [9].

We have resolved the evolution equations (3.12, 3.13)
using the local equilibrium (Huang [21]) approximation.
In this approximation only the parabolic path of the flow
diagram is followed (the initial state is defined by nH(0)
alone and also obeys the local equilibrium). The single,
one-variable evolution equation gives nH(t), as obtained
by Huang in [21]. It is worth comparing the results on this
one-variable approach to those of the two-variable model
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Fig. 9. Computed relaxation curves, nH(t), nHL(t) at different
temperatures (T = 50, 60 and 70 K). The initial sigmoidal
shape of the curve and the consecutive slowing down due to
the effect of correlations, are evidenced. On increasing the tem-
perature, the relaxation time decreases. The parameter value
are: J = 50 K, g = 150, ∆ = 300 K, Ea = 400 K and τ0 = 1
(arbitrary time unit).

developed in the present report. The following features
have been observed:

– At low temperatures, where correlations are crucial be-
cause reaching the local equilibrium (nH = 0) requires
very long times, the relaxation curves given by the 2-
and 1-variable treatments are very different, namely
the time dependences of the correlations, nHL (t), are
qualitatively different, and the relaxation tails are not
provided by the 1-variable treatements (see Fig. 10).
Precisely, the maximum of nHL (t), in the 1-variable
treatment, occurs at nH = 0.5, and this characterizes
a nHL dynamics which strictly follows that of nH. In
the 2-variable treatment (see Fig. 9), nHL (t) reaches a
maximum at a time t such that nH > 0.5. These dif-
ferences can be illustrated in the flow diagrams. The
point is that the trajectories reach the parabola only
around nH ' 1.

– At higher temperatures, the correlations are not so cru-
cial, and the local equilibrium method can be consid-
ered as a good approximation for the time dependence
of the long-range order parameter.

7 Comparison to experimental data

We have performed photoexcitation (LIESST) using a
550 nm wavelength on the FeII spin-crossover solids
[FepNi1−p(btr)2(NCS)2] · H2O, and present data for the
selected composition p = 0.52. Relaxation in the dark was
followed by a SQUID magnetometer (see [24,25] for exper-
imental details). Only selected data are presented here, for
the purpose of the discussion of the present model.

After photoexcitation, the system is considered to be
entirely populated in the HS state. The initial state is thus
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n H
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only short range interactions

short and long range interactions
local equilibrium

mean field

Fig. 10. Relaxation curve of the HS fraction of
[Fe0.52Ni0.48(btr)2(NCS)2] · H2O at T = 40 K. The best
fitted curves (full line) perfectly matches to the experimental
data (circles). It takes into account both long and short range
interactions in the two macro-variable approach. Parameter
values are: J = 52 K, Jl = 21 K, g = 3 000, ∆ = 540 K,
Ea = 835 K. The other curves have been computed with
parameter values chosen so as to reproduce the width of the
static hysteresis loop, but accounting for different constraints:
mean field, local equilibrium, purely short range interaction
(see corresponding labels in the figure).

defined by nH = 1 and nHL = 0. Of course, the actual ini-
tial state is not so perfect, with a slightly incomplete (and
inhomogenous) excitation state. A distribution of initial
populations might be straightforwardly introduced, but is
not crucial for controlling the relevance of the model. Also,
the investigation of diluted systems only aims to provide
systems with the desired degree of cooperativity. The ba-
sic study of the interactions (nature, range, evolution with
the degree of dilution) is not addressed here. We merely
treat the diluted system in a uniform approximation.

The results of the two variable-model and its one-
variable approach are also compared to those of the mean-
field approximation, which are governed by the following
equation:

dnH

dt
= −KnHe−αnH (7.1)

where α = 2βzJ .
A typical result is shown in Figure 10. We have ob-

served that, the more cooperative the system, the worse is
the agreement with the mean-field approximation, mostly
at long time. Then correlations cannot be neglected.
However, for short times, and weakly cooperative sys-
tems, the mean-field and the present 2-variable dynam-
ics are both in good agreement with the experiments.
We have evidenced, in the Section 5, two time scales, a
short one, associated with the onset of the local equi-
librium, and a long one, respectively associated with
the simultaneous evolutions of the short-range and long-
range order parameters. Now, the picture of the relaxation
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of the system appears more subtle; precisely, the effect
of correlations is crucial at all time scales, at short times
for the (more or less) rapid convergence towards the local
equilibrium, and at long times, when the development of
correlations is responsible for the “extra” slowing down of
the relaxation rate.

We have improved the agreement between the 2-
variable model and the experimental curves, see Figure 10,
by introducing long-range interactions which reduce
the amplitude of the tail effect. Indeed, it is now
admitted [18,26] that both interactions should be present
in spin-crossover solids, and the tail effect enables us to
weight the short- and long-range interactions. Thus the
relaxation curves should provide a novel access to the in-
vestigation of interactions [27]. Indeed, the usual strat-
egy based on dilution faces serious difficulties (see for
instance [28]), due to the large number of parameters in-
volved: ligand-field, degeneracies in addition to the specific
interaction parameters, all of them presumably being size-
ably dependent on the dilution state of the solid, through
structural effects.

8 Conclusion

In this work, we have investigated the effect of correla-
tions on the relaxation curves of the HS fraction in spin-
crossover systems. For this, we have adapted the macro-
scopic dynamics introduced in the 70’s by par Kubo et al.,
to the Ising-like Hamiltonian. We have introduced the cor-
relations according to the Bethe-Peierls method, and ob-
tained a set of coupled evolution equations for the two
macrovariables: magnetization and first-neighbour corre-
lations. An excellent agreement with the experimental
curves has been obtained, including the so-called “tail-
effect” which consists in an extra slowing-down of the re-
laxation for strongly cooperative systems at long times.
We thus confirmed that the tail effect is associated with
the onset of correlations. This result is promising for the
investigation of interactions in spin-crossover solids, which
till now are not fully understood. Another access to the ra-
tio short vs. long range interaction also emerges from the
analysis of the percolation threshold of the dilute system.

For a better understanding of the dynamics of the two
macrovariable model, we have determined the flow dia-
grams in the parameter space of the system. We found, in
the bistable case of the static system, a relaxation made
of two stages, an initial (and shorter) stage leading to
the local equilibrium dynamics involved in the Huang ap-
proximation. During this stage the short-range parameter
adiabatically follows the long-range parameter. The tra-
jectories rapidly join the local equilibrium curve. During
the second stage, both parameters slowly evolve together,
obeying the local equilibrium.

At low temperature, the two time scales are no longer
distinct, and the local equilibrium is not longer reached.
Indeed, the flow diagram trajectories are quite far from
the local equilibrium curve. Accordingly, the relaxation
curves computed according to the local equilibrium ap-
proach qualitatively differ from those of the present

2-variable model. The latter, in turn, perfectly reproduce
the available experimental data.
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